Moduli of CM abelian varieties
نویسنده
چکیده
We discuss CM abelian varieties in characteristic zero, and in positive characteristic. An abelian variety over a finite field is a CM abelian variety, as Tate proved. Can it be CM-lifted to characteristic zero? Does there exist an abelian variety of dimension g > 3 not isogenous with the Jacobian of an algebraic curve? Can we construct algebraic curves, say over C, where the Jacobian is a
منابع مشابه
Moduli of abelian varieties in mixed and in positive characteristic
We start with a discussion of CM abelian varieties in characteristic zero, and in positive characteristic. An abelian variety over a finite field is a CM abelian variety, as Tate proved. Can it be CM lifted to characteristic zero? Here are other questions. Does there exist an abelian variety, say over Qa, or over Fp, of dimension g > 3 not isogenous with the Jacobian of an algebraic curve? Can ...
متن کاملModuli Fields of Cm-motives Applied to Hilbert's 12-th Problem
We apply the theorem of Shimura and Taniyama to compute the largest abelian extension of a CM-eld E which can be obtained by evaluating E-rational automorphic functions at certain special points of Shimura varieties. Abelian class eld theory classiies the abelian extensions of a number eld k, but does not explain how to generate the elds. In his Jugendtraum, Kronecker suggested that the abelian...
متن کاملComplex multiplication and canonical lifts
The problem of constructing CM invariants of higher dimensional abelian varieties presents significant new challenges relative to CM constructions in dimension 1. Algorithms for p-adic canonical lifts give rise to very efficient means of constructing high-precision approximations to CM points on moduli spaces of abelian varieties. In particular, algorithms for 2-adic and 3-adic lifting of Frobe...
متن کاملHilbert-Siegel moduli spaces in positive characteristic
Hilbert-Siegel varieties are moduli spaces for abelian varieties equipped with an action by an order OK in a fixed, totally real field K. As such, they include both the Siegel moduli spaces (use K = Q and the action is the standard one) and Hilbert-Blumenthal varieties (where the dimension of K is the same as that of the abelian varieties in question). In this paper we study certain phenomena a...
متن کاملThe Structure of the Moduli Spaces of Curves and Abelian Varieties
§ 1. The purpose of this talk is to collect together what seem to me to be the most basic moduli spaces (for curves and abelian varieties) and to indicate some of their most important interrelations and the key features of their internal structure, in particular those that come from the theta functions. We start with abelian varieties. Fix an integer g ^ 1. To classify g-dimensional abelian var...
متن کامل